On the Approximation to Algebraic Numbers by Algebraic Numbers
نویسندگان
چکیده
Let n be a positive integer. Let ξ be an algebraic real number of degree greater than n. It follows from a deep result of W. M. Schmidt that, for every positive real number ε, there are infinitely many algebraic numbers α of degree at most n such that |ξ−α| < H(α)−n−1+ε, where H(α) denotes the näıve height of α. We sharpen this result by replacing ε by a function H 7→ ε(H) that tends to zero when H tends to infinity. We make a similar improvement for the approximation to algebraic numbers by algebraic integers, as well as for an inhomogeneous approximation problem.
منابع مشابه
ON SOME STRUCTURES OF FUZZY NUMBERS
The operations in the set of fuzzy numbers are usually obtained bythe Zadeh extension principle. But these definitions can have some disadvantagesfor the applications both by an algebraic point of view and by practicalaspects. In fact the Zadeh multiplication is not distributive with respect tothe addition, the shape of fuzzy numbers is not preserved by multiplication,the indeterminateness of t...
متن کاملThree Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates
In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with coll...
متن کاملThree Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates
In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with coll...
متن کاملApproximation of complex algebraic numbers by algebraic numbers of bounded degree
To measure how well a given complex number ξ can be approximated by algebraic numbers of degree at most n one may use the quantities w n (ξ) and w * n (ξ) introduced by Mahler and Koksma, respectively. The values of w n (ξ) and w * n (ξ) have been computed for real algebraic numbers ξ, but up to now not for complex, non-real algebraic numbers ξ. In this paper we compute w n (ξ), w * n (ξ) for a...
متن کاملSimultaneous Approximation of Logarithms of Algebraic Numbers
Recently, close connections have been established between simultaneous diophantine approximation and algebraic independence. A survey of this topic is given by M. Laurent in these proceedings [7]. These connections are one of the main motivations to investigate systematically the question of algebraic approximation to transcendental numbers. In view of the applications to algebraic independence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008